5th IASPEI/IAEE International Symposium

2016 August

15 - 17 TAIPEI TAIWAN

Effects of Surface Geology on Seismic Motion

Challenges of Applying Ground Motion Simulation to Earthquake Engineering

TOPICS	
- Ground Motion Simulation	
- Soil Dynamic and Nonlinearity	
- Applications of Microtremor Survey	
- Near Fault Ground Motion	
- Downhole Array Observation and Analysis	
- Shallow Velocity Structure and Depth Paramet	ers
- Seismic Hazard and Loss Assessment	

IMPORTANT DATE Abstract Submission Nov. 15th, 2015 - Feb. 15th, 2016 Apr. 1st - Jun. 1st, 2016 - Full Paper Submission Mar. 15th- Jun. 1st, 2016

Conference Aug. 15th-17th, 2016

NARLabs

Using Ambient Vibration Measurements for Risk Assessment at Urban Scale : from Numerical Proof of Concept to a Case Study in Beirut (Lebanon)

al Symposium

EE

s of ce Geology Christelle Salameh Pierre-Yves Bard¹, smic Motion

UNIVERSITÉ

Grenoble

Taiwan

of Applying Ground Motice b Earthquake Engineering

servation and Analysis Jelocity Structure and Depth Parameters

IMPORTANT DATE HM 15th, 2015 - Feb. 15th, 2016

Apr. 1st - Jun. 1st, 2016 Mar. 15th- Jun. 1st, 2016

> WEBSITE esg5.ncre

> > ESG5. T

Conference Aug. 15th-17th, 2016

In the

NARLabs

ISTerre Institut des Sciences de la Terre

斜线髋

IFSTTAR

Jacques Harb²,

Nichelle Almakari¹

enoble-Alpes, France

sity-Louaizé, Lebanon

Outline

Introduction

? Use of frequency information in large scale damage assessment

Conceptual framework and comprehensive numerical simulation

SDOF elastoplastic oscillators on multilayered 1D (linear) soil profiles ANN analysis

Robustness and field applicability

? easily available site amplification proxy
NL soil behavior
(MDOF)

Sense-check : example Application to Beirut City (Lebanon)

Conclusions, caveats and further steps

Introductory words

- Many examples of larger damage due to coincidence between soil and building frequencies
 - > Mexico 1985, Kathmandu 2015, ...
 - > Obvious for linear systems, not so much for NL systems
- Building specific studies (detailed information)

 \succ best GM proxy = SA (f₀) or ASA ([0.6 - 1] f₀)

- (Perrault & Gueguen, 2015; De Biasio, 2015)

• ? Urban scale (or larger) : Damage / Risk maps

> Microzonation, site effects : rather quantitative assessment

- Site characterization : Geology, VS30, f0 (H/V, ...)
- Site amplification
- > Building surveys : most often only qualitative
 - Gross typology

ESG5, Taipei, Taiwan, 15/08/2016

Lack of consistency hazard / vulnerabilty

Damage Estimation

Bullding scale : Mechanical methods

Spectral Displacement (inches)

Purple: Seismic demand Black: Building Resistance

Individual scale equantitative

Large scale (urban) ? Macroseismic approach (Hazus, RISK-UE)

Estimate damages quantitatively on a large scale with more mechanical input including spectral coincidence

Outline

Introduction

? Use of frequency information in large scale damage assessment

Conceptual framework and comprehensive numerical simulation

Elastoplastic SDOF oscillator on a single layer Extension through comprehensive numerical simulation SDOF elastoplastic oscillators on multilayered 1D soil profiles Neural network analysis

Oscillator response : weak input (linear response)

Oscillator response : strong input (non linear domain)

Conceptual framework : a simple illustrative example

Comparison soil / rock dmax_{soil} / dmax_{rock} dmax_{soil} On soil **On outcropping** bedrock dmax_{rock} mapping

Bedrock

ESG5, Taipei, Taiwan, 15/08/2016

Same input motion

markhan MM Mahamman

Bedrock

Statistical analysis for the simple case

Realistic (less unrealistic...) case: real soil profiles

:

Risk-UE typologies : 141 SDOF elastoplastic oscillators

- f _{struct}, dy, du classified into 5 typology classes:
 - 1 = Masonry; 2 = Non-designed RC;
 - 3 = RC Low ductility;

4= RC Medium ductility; 5) RC High ductility

887 multilayered linear soils (still no SSI): 614 KiKnet + 251 USA + 22 Europe f_{soil}= 0.2-39 Hz Vs30= 111 -2100 m/s depth= 7-1575 m

60 synthetic Input Signal: Magnitude= $3 \rightarrow 7$, Distance = $5 \rightarrow 100$ km PGA= 0.02- 8.6 m/s²

~7.5 MILLION MODELS!!!

Oscillator characteristics

ESG5, Taipei, Taiwan, 15/08/2016

Distribution of site characteristics

150 100 Frequency 50 0 04 C 0C 2400.07 Thickness (m) 1000 1 100 Velocity contrast 70 60 Frequency 50 40 30 20 10 ~- · · ~~ ~ · - --~~ ~~ 3. 10. 30. $C_V = V_{max} / V_{min}$

Sediment Thickness

Fundamental frequency

Classical statistical analysis?

~7.5 MILLION MODELS!!!

Artificial Neural Network ANN

Neural network approach

Goal

to look for statistical relationships between pre-selected input and output variables, without any a priori on the functional forms

Principle (ML perceptron)

- Combination through weighted sums ("synaptic weights") and "activation functions"
- Introduction of a "hidden layer"

Implementation

- Selection of input and output parameters
- Learning, validation and test sets : 70%, 15%, 15%
- > Optimizing
 - Number of neurons in the hidden layer
 - Activation functions
 - Training algorithm

Neural Network : principle

Neural Network: Our case study

Damage level index

Risk-UE project : correspondence between EMS98 damage states and maximum structural displacement (Lagomarsino and Giovinazzi, 2006)

Performance of the ANN models

ANN Model / Vulnerability Class	Initial standard deviation	Error RMSE	RMSE Reduction	Variance reduction	Coeffificient of determination R ²
Class 1 (Masonry)	0.182	0.126	31%	52%	0.81
Class 2 (Non-designed RC)	0.170	0.102	40%	64%	0.80
Class 3 (Low ductility RC)	0.172	0.112	35%	58%	0.81
Class 4 (Medium ductility RC)	0.153	0.094	39 %	62%	0.81
Class 5 (High ductility RC)	0.147	0.096	35%	57%	0.82

Variance Reduction 50-64% + Good R²

Satisfactory performance (given the small number of input parameters)

Relative importance of input parameters : synaptic weights

Dependence of damage increment on SSS inputs (example: class 3 - Low Ductility RC)

Outline

Introduction

Proof of concept : comprehensive numerical simulation

Robustness and field applicability

Field applicability : site amplification proxy NL soil behavior (MDOF)

Fiel applicability : Input parameters

Loading : PGA

Spectral coincidence : fstruct / fsoil

Building mechanical behavior : typology class

Site amplification : velocity contrast Cv

> ? Other site amplification proxies : V_{S30}, V_{S10}, A_{0HV},

Numerical simulation of ambient noise

After Bonnefoy-Claudet et al., (2006)

Step 1: Definition of sources-receiver configuration

Step 2: Computation of Greens functions : DWN

[Hisada, 1995]

Step 3: Summation of all the individual noise synthetics in the time domain.

Total ambient noise synthetics for each of the 887 soil profiles (5-10 min)

Derivation and check of the "expected" H/V spectral ratio

ESG5, Taipei, Taiwan, 15/08/2016

Modified Neural Network

Performance of each site amplification proxy : RMSE

Robustness : accounting for soil non-linear response

Evolution of site transfer functions with PGA

(see also Almakari et al., ESG5 2016)

Shift of frequency towards lower values + decrease of amplification

Nonlinear simulations

New neural network

Results with NL soil for building typology class 3

Summary of ANN performances

		Model 1	Model 2	Model 3
		velocity	H/V	Non-linear site
		contrast,	amplitude,	response,
		linear site	linear site	impedance
		response	response	contrast
Site amp	lification proxy	$C = V_{max}/V_{min}$	A _{OHV}	$C = V_{max}/V_{min}$
Performance indicators	Standard deviation (initial value : 0.1724)	0.112	0.099	0.103
	Coefficient of determination R ²	0.81	<mark>0.86</mark>	0.82
Synaptic weights	f _{struct} /f _{soil}	<mark>0.51</mark>	<mark>0.51</mark>	<mark>0.51</mark>
	Site amplification proxy	0.19	0.20	<mark>0.16</mark>
	PGA	0.30	0.29	<mark>0.33</mark>

Outline

Introduction

Conceptual model and comprehensive numerical simulation

Robustness and field applicability

Sense-check : example application to Beirut City (Lebanon)

- > Seismic hazard in Beirut / Lebanon
- Gathering of required data for Beirut City : ambient vibration measurements at ground level and in buildings
- Results

LEBANON

Needed :

Building

requenci

Soil frequency H/V amplitude

PGA on rock

Building typology Mediterranean Sea

⁻f₀ soil (Brax, 2013)

Furn el chebbal

Borj Hammou

> H/V Ground surfa Buildings on rock I Buildings on soft site

Image © 2016 DigitalGlobe Image © 2016 CNES / Astrium

Lennartz LE-3D-5s seismometer

ESG5, Taipei, Taiwan, 15/08/2016

March 1

CitySharkII recorder

Building set Description

330 buildings = 660 frequency and damping values

Rock Sites

- 197 measurements
- Typology: reinforced concrete frames
 - N= 1-26 floors
 - Age: 1910-2014

"Soft" Sites

- 133 measurements
- Typology: reinforced concrete frames
- N= 1-33 floors
- Age: 1910-2014

Determination of empirical formulae for Beirut buildings

Longer periods on soils fully consistent with larger damping : indicative of some SSI (but with only slight frequency shifts)

Building inventory

Survey of 7362 buildings by members of Saint Joseph University (USJ) noting

- the age of construction + material
- number of floors
- position of each building

→ Assignment of a period for each building in the surveyed areas $T_0=f(N, geology)$

Damage increment maps of Beirut

PGA

0.5g

0.45g

0.4g

0.35g

0.3g

0.25g

0.2g

0.15g

0.1g

0.059

ESG5, Taipei, Taiwan, 15/08/2016

Summary

Key factors controlling damage level Linear soil

Conclusions

1. Key parameters controlling the rock to soil damage increment

1. Easy implementation based on

- Classical building inventory surveys
- Extensive use of amnbient vinration measurements (ground level + building roofs)

Quite promising approach, but ... a few caveats and further steps

Limitations

Perspectives

Input	Synthetic accelerograms	Real accelerograms (No real change on NL site response)		
Site	Crude NGAW2 assumptions for NL site characteristics	More realistic NL behavior (Shallow NL underestimated, deep NL overestimated		
	Definition of damage index	? Other ?		
Structi	ure SDOF structures only	MDOF (some changes,mostly in the linear domain)		
	Oversimplified elastoplastic model	More realistic structural NL models (Takeda,)		
ANN model	Neural networks : only 3 "basic parameters"	Other, or additional input parameters (loading : PGA → spectral shape, ??)		
	+ testing in areas recently hit by damaging earthquakes (ex.: Puerto Viejo, Ecuador)			

References

- Bonilla, L. F. (2001). *NOAH: Users Manual*. Institute for Crustal Studies, University of California, Santa Barbara.
- Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., et al. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. *Geophysical Journal International*, *167*(2), 827-837.
- Hisada, Y. (1995). An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (Part 2). *Bulletin of the Seismological Society of America*, *85*(4), 1080-1093.
- Kamai, R., N.A. Abrahamson and W.J. Silva (2014). Nonlinear horizontal site amplification for constraining the NGA-West 2 GMPEs, *Earthquake Spectra 30*, 1223-1240
- Lagomarsino , S., & Giovinazzi, S. (2006). Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. *Bulletin of Earthquake Engineering*, *4*(4), 415-443.
- Sabetta, F., & Pugliese, A. (1996). Estimation of response spectra and simulation of nonstationary earthquake ground motions. *Bulletin of the Seismological Society of America*, 86(2), 337-352.

Acknowledgements

IRD, France: C. Salameh's PhD fellowship

M. Brax, CRG/CNRS Beirut: Beirut H/V map

Saint-Joseph University, Beirut: Building inventory

LIBRIS project: C. Voisin + French ANR

+ your kind and patient attention

THANKS